
LES MOLÉCULES ET LES ATOMES

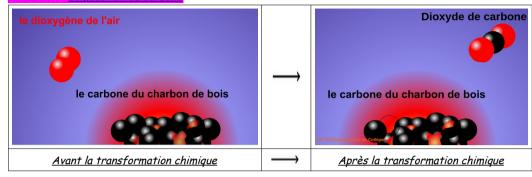
I. LA MASSE VARIE-T-ELLE LORS D'UNE TRANSFORMATION CHIMIQUE ?

On met des cachets d'aspirine effervescents dans une bouteille d'eau puis on la referme.

Que constates-tu?

Lors de la combustion du carbone, du carbone et du dioxygène disparaissent.

Résumé:			
RESUITIE:			


Citation du chimiste LAVOISIER:

"RIEN NE SE PERD, RIEN NE SE CRÉE, TOUT SE TRANSFORME"

Fais les exercices 1 et 2 de la feuille correspondante

II. INTERPRÉTATION À L'ÉCHELLE MOLÉCULAIRE

Animation > Combustion du carbone

Lors de la combustion du carbone, chaque molécule de dioxygène tape sur un atome de carbone.

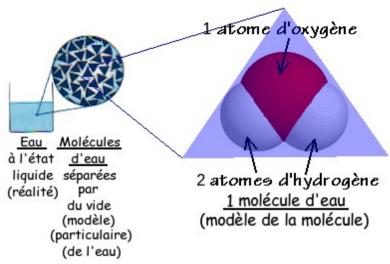
La molécule de dioxygène se casse en deux parties identiques appelées "atomes d'oxygène".

Les deux atomes d'oxygène s'assemblent avec l'atome de carbone percuté.

Ces trois atomes forment une molécule de dioxyde de carbone qui s'en va librement.

NOM			
MODÈLE		•	

De quoi est constituée une molécule de dioxygène ?


De quoi est constituée une molécule de dioxyde de carbone ?

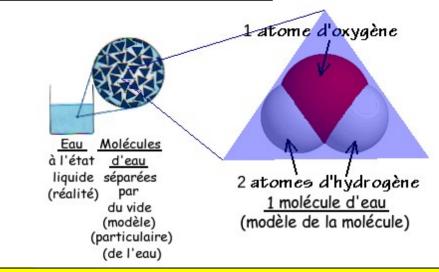
	RÉ <i>AC</i> TIFS			\longrightarrow	PRODUIT
Bilan de la transformation chimique		+		\longrightarrow	
Modèle moléculaire		+	•	→	
Nombre d'atomes de chaque sorte		+		→	

Résumé:

Fais l'exercice 3 de la feuille correspondante

III. MATIÈRE ET ASSEMBLAGE D'ATOMES

Résumé:			


Nom de l'atome	Hydrogène	Carbone	Oxygène
Modèle de l'atome			
Symbole de l'atome			

À chaque molécule on lui associe une formule chimique:

A chaque morecure on rai a	A chaque molecule on ful associe une formule chimique.				
Nom de la molécule	Eau	Dioxygène	Dioxyde de carbone		
Modèle moléculaire					
Formule chimique					
Composition de la molécule					

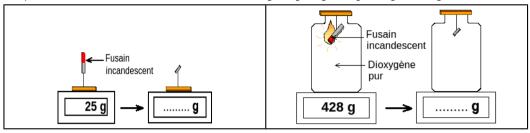
Fais les exercices 4, 5 et 6 de la feuille correspondante

III. MATIÈRE ET ASSEMBLAGE D'ATOMES

<u>kesume:</u>			

Nom de l'atome	Hydrogène	Carbone	Oxygène
Modèle de l'atome			
Symbole de l'atome			

À chaque molécule on lui associe une formule chimique:


	r chaque morecure on lar associe une formale chimique:				
Nom de la molécule	Eau	Dioxygène	Dioxyde de carbone		
Modèle moléculaire					
Formule chimique					
Composition de la molécule					

Fais les exercices 4, 5 et 6 de la feuille correspondante

EXERCICES SUR "LES MOLÉCULES ET LES ATOMES"

EXERCICE 1: Évolution de la masse lors d'une transformation chimique

Complète les schémas ci-dessous avec les valeurs: 19 g, 25 g, 31 g, 422 g, 428 g ou 434 g.

EXERCICE 2: Conservation de la masse

Pour brûler complètement 3 grammes de carbone dans un bocal fermé rempli de dioxygène pur, il faut utiliser au minimum 8 grammes de dioxygène pur afin que tout le carbone disparaisse.

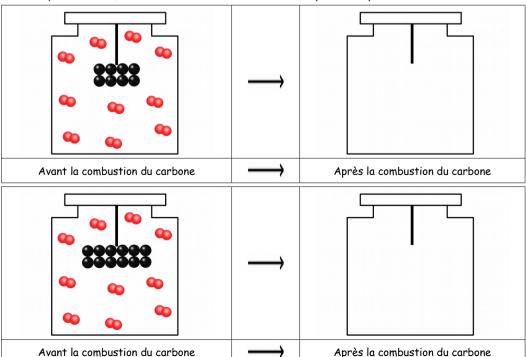
	Masse de chaque matière au début de la combustion		Masse de chaque matière à la fin de la combustion		
Matières	Carbone	Dioxygène	Carbone	Dioxygène	Dioxyde de carbone
bocal n°1	3 g	8 g			
bocal n°2	3 g	20 g			
bocal n°3	12 g	8 g			
bocal n°4	12 g	32 g			

EXERCICE 3: Modèle de représentation d'une molécule

Nom	dioxygène	carbone	dioxyde de carbone	oxygène	trioxygène	monoxyde de carbone
Modèle						

EXERCICE 4: Composition atomique d'une molécule

Nom de la molécule	Formule chimique	Atomes présents
acide méthanoïque	CH2O2	
méthanol	CH₄O	
éthanol	C₂H ₆ O	


EXERCICE 5: De la formule chimique au modèle moléculaire

Tu peux t'aider du logiciel vu en classe: http://phet.colorado.edu/fr/simulation/build-a-molecule

Formule chimique	O ₂	20	O ₃	2O ₂	2O ₃	3O ₂
Modèle moléculaire						
Formule chimique	H₂O	3H₂O	H ₂ + O ₂	H₂O₂	2H ₂ + O ₂	3H₂O₂
Modèle moléculaire						

EXERCICE 6: Atomes et transformation chimique

Dans chaque bocal vide, dessine les atomes et/ou les molécules présents après la combustion.

